目 录CONTENT

文章目录

苹果新研究:AI 不听录音,仅凭文本描述即可零样本识别洗碗等 12 种活动

Administrator
2025-11-23 / 0 评论 / 0 点赞 / 0 阅读 / 0 字

📢 转载信息

原文链接:https://www.ithome.com/0/899/336.htm

原文作者:故渊


IT之家 11 月 22 日消息,科技媒体 9to5Mac 昨日(11 月 21 日)发布博文,报道称在最新公布的研究报告中,苹果指出大语言模型(LLM)可通过分析音频和运动数据的文本描述,精准识别用户活动,未来可能会应用于 Apple Watch 上。


这项名为“后期多模态传感器融合”(Late Multimodal Sensor Fusion)的技术,主要结合 LLM 的推理能力与传统传感器数据,即使在传感器信息不足的情况下,也能精确判断用户正在进行的具体活动。


研究的核心方法颇具新意。大语言模型并未直接处理用户的原始音频录音或运动数据,而是分析由专门的小型模型生成的文本描述


具体来说,音频模型会生成描述声音环境的文字(如“水流声”),而基于惯性测量单元(IMU)的运动模型则会输出动作类型的预测文本。这种方式不仅保护了用户隐私,还验证了 LLM 在理解和融合多源文本信息以进行复杂推理方面的强大能力。


为验证该方法,研究团队使用了包含数千小时第一人称视角视频的 Ego4D 数据集。他们从中筛选出 12 种日常活动,包括吸尘、烹饪、洗碗、打篮球、举重等,每段样本时长 20 秒。


随后,研究人员将小模型生成的文本描述输入给谷歌的 Gemini-2.5-pro 和阿里的 Qwen-32B 等多个大语言模型,并测试其在“零样本”(无任何示例)和“单样本”(提供一个示例)两种情况下的识别准确率。


测试结果显示,即使没有任何针对性地训练,大语言模型在活动识别任务中的表现也远超随机猜测的水平,其 F1 分数(衡量精确率和召回率的指标)表现优异。当获得一个参考示例后,模型的准确度还会进一步提升。


这项研究表明,利用 LLM 进行后期融合,可以有效开发出强大的多模态应用,而无需为特定场景开发专门模型,从而节省了额外的内存和计算资源。苹果公司还公开了实验数据和代码,以供其他研究者复现和验证。





🚀 想要体验更好更全面的AI调用?

欢迎使用青云聚合API,约为官网价格的十分之一,支持300+全球最新模型,以及全球各种生图生视频模型,无需翻墙高速稳定,文档丰富,小白也可以简单操作。

0

评论区